Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of AlxGa1-xN III-V Ternary Semiconductor
X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
Compound AlxGa1-xN XM value1.8 1.767479 1.75144 1.73555 1.719797 1.70419 1.688726 1.673401 1.658215401 1.643168 XN value 3 3 3 3 3 3 3 3 3 3
(XM/XN)2 0.36 0.347109 0.340838 0.33468 0.3286335 0.322696 0.316866 0.311141 0.305519813 0.3 (XM-XN)21.44 1.519107 1.558902 1.59884 1.6389197 1.679122 1.719441 1.759865 1.800385911 1.840994
2(XM-XN)22.7132087 2.866136 2.946294 3.029 3.1143253 3.202331 3.293087 3.386665 3.483133842 3.582568 (2(XM-XN)2)1/4 1.2834259 1.30114 1.310144 1.31924 1.3284371 1.337724 1.347103 1.356573 1.366131611 1.375779 28.8/(2(XM-XN)2)1/4 22.43994 22.13443 21.98232 21.8307 21.679611 21.5291 21.37921 21.22997 21.08142419 20.9336
ALPHA-M 37.49 36.8 36.4 36.1 35.7 35.3 35 34.6 34.3 33.9 RO-VALUES 6.1 5.82 5.67 5.53 5.39 5.25 5.11 4.96 4.82 4.68 M-VALUES 83.73 79.5 77.3 75.2 73 70.9 68.8 66.6 64.5 62.4 ALPHA-M*RO/M2.7312672 2.694038 2.669961 2.65469 2.6359315 2.613893 2.599564 2.576817 2.563193798 2.5425
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 6.887E+24 6.79E+24 6.73E+24 6.7E+24 6.647E+24 6.59E+24 6.56E+24 6.5E+24 6.46343E+24 6.41E+24
1-(4PIN/3)*ALPHAM*RO/M 6.887E+24 6.79E+24 6.73E+24 6.7E+24 6.647E+24 6.59E+24 6.56E+24 6.5E+24 6.46343E+24 6.41E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.377E+25 1.36E+25 1.35E+25 1.3E+25 1.329E+25 1.32E+25 1.31E+25 1.3E+25 1.29269E+25 1.28E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 11.21997 11.06721 10.99116 10.9153 10.839806 10.76455 10.68961 10.61499 10.5407121 10.4668
Eg value2.3877948 2.303538 2.263744 2.22541 2.188481 2.152886 2.118571 2.085479 2.053558296 2.022759
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
XM value1.628256 1.613481 1.598839 1.58433 1.569953 1.555706 1.541588 1.527599 1.513737 1.5 XN value 3 3 3 3 3 3 3 3 3 3
(XM/XN)2 0.29458 0.289258 0.284032 0.2789 0.273861 0.268913 0.264055 0.259284 0.2546 0.25 (XM-XN)21.88168 1.922436 1.963253 2.004122 2.045035 2.085985 2.126964 2.167965 2.208979 2.25 (2(XM-XN)2)1/4 1.385513 1.395333 1.405237 1.415224 1.425293 1.435443 1.445673 1.455981 1.466365 1.476826 28.8/(2(XM-XN)2)1/4 20.78653 20.64024 20.49477 20.35014 20.20637 20.06349 19.92152 19.78048 19.6404 19.50128
ALPHA-M 33.5 33.2 32.8 32.5 32.1 31.7 31.4 31 30.7 30.3 RO-VALUES 4.54 4.4 4.25 4.11 3.97 3.83 3.69 3.54 3.4 3.26 M-VALUES 60.2 58.1 55.9 53.8 51.7 49.5 47.4 45.3 43.1 40.99 ALPHA-M*RO/M2.526412 2.514286 2.493739 2.482807 2.464932 2.452747 2.44443 2.422517 2.42181 2.409807
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 6.37E+24 6.34E+24 6.29E+24 6.26E+24 6.22E+24 6.18E+24 6.16E+24 6.11E+24 6.11E+24 6.08E+24
1-(4PIN/3)*ALPHAM*RO/M 6.37E+24 6.34E+24 6.29E+24 6.26E+24 6.22E+24 6.18E+24 6.16E+24 6.11E+24 6.11E+24 6.08E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.27E+25 1.27E+25 1.26E+25 1.25E+25 1.24E+25 1.24E+25 1.23E+25 1.22E+25 1.22E+25 1.22E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 10.39326 10.32012 10.24738 10.17507 10.10318 10.03174 9.96076 9.890242 9.820199 9.75064
Eg value1.993034 1.964338 1.936628 1.909863 1.884006 1.859018 1.834865 1.811513 1.788931 1.767088
Doping of Al component in a Binary semiconductor like GaN and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of AlxGa1-xN III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of AlxGa1-xN III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,