Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of InAsxN1-x III-V Ternary Semiconductor X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
Compound InAsxN1-x XM value 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 XN value 3 2.880794 2.822978 2.766324 2.710806 2.656402 2.603091 2.550849 2.499656 2.44949 (XM/XN)2 0.321111 0.348236 0.362646 0.377652 0.393279 0.409553 0.4265 0.444149 0.462527 0.481667 (XM-XN)2 1.69 1.394273 1.261081 1.137046 1.021729 0.914706 0.815573 0.723944 0.639449 0.561735 2(XM-XN)2 3.226567 2.628561 2.396752 2.199303 2.03035 1.885184 1.759997 1.651691 1.557734 1.476043 (2(XM-XN)2)1/4 1.340248 1.273296 1.244245 1.217787 1.193693 1.171759 1.151802 1.133658 1.117181 1.102236 28.8/(2(XM-XN)2)1/4 21.48856 22.61846 23.14657 23.64946 24.1268 24.57842 25.00429 25.40448 25.77918 26.1287
ALPHA-M 54.88 59.882 62.883 64.884 67.385 69.886 72.387 74.888 77.389 79.89 RO-VALUES 6.88 6.758 6.697 6.636 6.575 6.514 6.453 6.392 6.331 6.27 M-VALUES 128.83 134.921 137.9665 141.012 144.0575 147.103 150.1485 153.194 156.2395 159.285 ALPHA-M*RO/M 2.930796 2.999404 3.052389 3.05343 3.075552 3.094685 3.111009 3.124692 3.135889 3.144742
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.39E+24 7.56E+24 7.7E+24 7.7E+24 7.76E+24 7.8E+24 7.84E+24 7.88E+24 7.91E+24 7.93E+24 1-(4PIN/3)*ALPHAM*RO/M 7.39E+24 7.56E+24 7.7E+24 7.7E+24 7.76E+24 7.8E+24 7.84E+24 7.88E+24 7.91E+24 7.93E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.48E+25 1.51E+25 1.54E+25 1.54E+25 1.55E+25 1.56E+25 1.57E+25 1.58E+25 1.58E+25 1.59E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 10.74428 11.30923 11.57329 11.82473 12.0634 12.28921 12.50214 12.70224 12.88959 13.06435
Eg value 2.143495 2.327251 2.43029 2.541802 2.662683 2.793945 2.93673 3.092338 3.262241 3.448119
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 Compound XM value 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 XN value 2.400331 2.352158 2.304952 2.258694 2.213364 2.168944 2.125415 2.082759 2.04096 2
(XM/XN)2 0.501598 0.522354 0.543969 0.566478 0.589919 0.614329 0.63975 0.666223 0.693791 0.7225 (XM-XN)2 0.490463 0.42531 0.365967 0.312139 0.263542 0.219908 0.180978 0.146505 0.116254 0.09 2(XM-XN)2 1.404896 1.342861 1.288745 1.241547 1.200423 1.164659 1.133652 1.106885 1.083917 1.06437 (2(XM-XN)2)1/4 1.088707 1.076484 1.065471 1.055579 1.046727 1.038843 1.031858 1.025712 1.02035 1.015718 28.8/(2(XM-XN)2)1/4 26.4534 26.75375 27.03029 27.2836 27.51433 27.72316 27.91082 28.07805 28.22562 28.35432
ALPHA-M 82.391 84.892 87.393 89.894 92.395 94.896 97.397 99.898 102.399 104.90 RO-VALUES 6.209 6.148 6.087 6.026 5.965 5.904 5.843 5.782 5.721 5.66 M-VALUES 162.3305 165.376 168.4215 171.467 174.5125 177.558 180.6035 183.649 186.6945 189.74 ALPHA-M*RO/M 3.151384 3.155936 3.158511 3.159216 3.158147 3.155397 3.15105 3.145186 3.137879 3.129198
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.95E+24 7.96E+24 7.96E+24 7.97E+24 7.96E+24 7.96E+24 7.95E+24 7.93E+24 7.91E+24 7.89E+24 1-(4PIN/3)*ALPHAM*RO/M 7.95E+24 7.96E+24 7.96E+24 7.97E+24 7.96E+24 7.96E+24 7.95E+24 7.93E+24 7.91E+24 7.89E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.59E+25 1.59E+25 1.59E+25 1.59E+25 1.59E+25 1.59E+25 1.59E+25 1.59E+25 1.58E+25 1.58E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 13.2267 13.37688 13.51515 13.6418 13.75717 13.86158 13.95541 14.03902 14.11281 14.17716
Eg value 3.65189 3.87575 4.12222 4.394201 4.695043 5.028625 5.399448 5.812757 6.274681 6.7924
Doping of As component in a Binary semiconductor like InN and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of InAsxN1-x III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work on Electro Negativity values and Band Energy Gap of InAsxN1-x III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity". 2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582.. 3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332 . 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6. 5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.. 6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793.. 7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585.. 8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801.. 9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167. 10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264.. 11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996). 12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984). 13) CRC Handbook of Physics and Chemistry, 76th edition. 14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259 15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,