Theoretical Impact: Formula: Eg=[28.8/(2(XM-XN)2)1/4*(1-f12/1+2*f12)]POWER (XM/XN)2 Where:f12=[4pN/3]*[aM12*r12]/M12 Electro Negativity values of Elemental Semiconductors: Compound Al Ga As In P Sb N E.N value 1.5 1.8 2 1.7 2.1 1.9 3
Electro Negativity values of AlAsxSb1-x III-V Ternary Semiconductor X value 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1-x value 1 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Compound
GaPxSb1-x XM value 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 XN value 1.9 1.919111 1.928739 1.938415 1.948139 1.957913 1.967735 1.977606 1.987528 1.997498
(XM/XN)2 0.897507 0.87972 0.87096 0.862286 0.853699 0.845198 0.836781 0.828448 0.820198 0.81203 XM-XN -0.1 -0.11911 -0.12874 -0.13841 -0.14814 -0.15791 -0.16773 -0.17761 -0.18753 -0.1975 (XM-XN)2 0.01 0.014188 0.016574 0.019159 0.021945 0.024936 0.028135 0.031544 0.035167 0.039006
2(XM-XN)2 1.006956 1.009883 1.011554 1.013368 1.015328 1.017435 1.019693 1.022105 1.024675 1.027405 (2(XM-XN)2)1/4 1.001734 1.002462 1.002876 1.003325 1.00381 1.00433 1.004887 1.005481 1.006113 1.006782 28.8/(2(XM-XN)2)1/4 28.75014 28.72928 28.7174 28.70454 28.69069 28.67582 28.65993 28.643 28.62503 28.60599
ALPHA-M 110.32 106.576 104.704 102.832 100.96 99.088 97.216 95.344 93.472 91.6 RO-VALUES 5.62 5.471 5.3965 5.322 5.2475 5.173 5.0985 5.024 4.9495 4.875 M-VALUES 191.48 182.402 177.863 173.324 168.785 164.246 159.707 155.168 150.629 146.09 ALPHA-M*RO/M 3.237928 3.196661 3.1768 3.157508 3.138831 3.12082 3.103532 3.08703 3.071385 3.056677
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 8.16E+24 8.06E+24 8.01E+24 7.96E+24 7.91E+24 7.87E+24 7.83E+24 7.78E+24 7.74E+24 7.71E+24 1-(4PIN/3)*ALPHAM*RO/M 8.16E+24 8.06E+24 8.01E+24 7.96E+24 7.91E+24 7.87E+24 7.83E+24 7.78E+24 7.74E+24 7.71E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.63E+25 1.61E+25 1.6E+25 1.59E+25 1.58E+25 1.57E+25 1.57E+25 1.56E+25 1.55E+25 1.54E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.37507 14.36464 14.3587 14.35227 14.34534 14.33791 14.32996 14.3215 14.31251 14.303
Eg value 10.93863 10.42547 10.18124 9.94482 9.715908 9.494222 9.279487 9.071444 8.869841 8.674441
X value 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1-x value 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Compound XM value 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 XN value 2.007519 2.01759 2.027712 2.037885 2.048108 2.058383 2.068709 2.079087 2.089517 2.1
(XM/XN)2 0.803944 0.795938 0.788011 0.780164 0.772395 0.764703 0.757088 0.749548 0.742084 0.734694 (XM-XN)2 0.043064 0.047346 0.051853 0.056589 0.061558 0.066762 0.072205 0.07789 0.08382 0.09
2(XM-XN)2 1.0303 1.033362 1.036595 1.040004 1.043592 1.047363 1.051322 1.055473 1.059821 1.06437 (2(XM-XN)2)1/4 1.00749 1.008238 1.009026 1.009854 1.010724 1.011636 1.012591 1.013589 1.014631 1.015718 28.8/(2(XM-XN)2)1/4 28.58588 28.56468 28.54238 28.51896 28.49442 28.46873 28.4419 28.41389 28.3847 28.35432
ALPHA-M 89.728 87.856 85.984 84.112 82.24 80.368 78.496 76.624 74.752 72.88 RO-VALUES 4.8005 4.726 4.6515 4.577 4.5025 4.428 4.3535 4.729 4.2045 4.13 M-VALUES 141.551 137.012 132.473 127.934 123.395 118.856 114.317 109.778 105.239 100.70 ALPHA-M*RO/M 3.042997 3.030446 3.01914 3.009213 3.000815 2.994123 2.98934 3.300797 2.986486 2.989021
TOTAL 4*PI*N 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 7.56E+24 4*PI*N/3 VALUES 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 2.52E+24 (4PIN/3)*ALPHAM*RO/M 7.67E+24 7.64E+24 7.61E+24 7.59E+24 7.57E+24 7.55E+24 7.54E+24 8.32E+24 7.53E+24 7.54E+24 1-(4PIN/3)*ALPHAM*RO/M 7.67E+24 7.64E+24 7.61E+24 7.59E+24 7.57E+24 7.55E+24 7.54E+24 8.32E+24 7.53E+24 7.54E+24 1+2*(4PIN/3)*ALPHAM*RO/M 1.53E+25 1.53E+25 1.52E+25 1.52E+25 1.51E+25 1.51E+25 1.51E+25 1.66E+25 1.51E+25 1.51E+25
1-phi12/1+phi12 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 28.8/(2(XM-XN)2)1/4*(1-phi12/1+2*phi12) 14.29294 14.28234 14.27119 14.25948 14.24721 14.23437 14.22095 14.20695 14.19235 14.17716
Eg value 8.485013 8.301339 8.123208 7.95042 7.78278 7.620105 7.462217 7.308947 7.160131 7.015613
Doping of P component in a Binary semiconductor like GaSb and changing the composition of do pant has actually resulted in lowering of Band Energy Gap.
Future Plans: 1) Current data set of Electro Negativity values of GaPxSb1-x III-V Ternary Semiconductors and Band Energy Gap values include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future.
2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance.
Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications.
2) Limited theoretical work on Electro Negativity values and Band Energy Gap of GaPxSb1-x III-V Ternary Semiconductors with in the Composition range of (0 3) Our results regarding the Electro Negativity values and Band Energy Gap of III-V Ternary Semiconductors are found to be in reasonable agreement with the experimental data Results and Discussion: Electro Negativity values of Ternary Semiconductors are used in calculation of Band Energy Gaps and Refractive indices of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering.
Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy.
References: 1) IUPAC Gold Book internet edition: "Electronegativity".
2) Pauling, L. (1932). "The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms". Journal of the American Chemical Society 54 (9): 3570–3582..
3) Pauling, Linus (1960). Nature of the Chemical Bond. Cornell University Press. pp. 88–107. ISBN 0801403332
. 4) Greenwood, N. N.; Earnshaw, A. (1984). Chemistry of the Elements. Pergamon. p. 30. ISBN 0-08-022057-6.
5) Allred, A. L. (1961). "Electronegativity values from thermochemical data". Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221..
6) Mulliken, R. S. (1934). "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities". Journal of Chemical Physics 2: 782–793..
7) Mulliken, R. S. (1935). "Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments". J. Chem. Phys. 3: 573–585..
8) Pearson, R. G. (1985). "Absolute electronegativity and absolute hardness of Lewis acids and bases". J. Am. Chem. Soc. 107: 6801..
9) Huheey, J. E. (1978). Inorganic Chemistry (2nd Edn.). New York: Harper & Row. p. 167.
10) Allred, A. L.; Rochow, E. G. (1958). "A scale of electronegativity based on electrostatic force". Journal of Inorganic and Nuclear Chemistry 5: 264..
11) Prasada rao., K., Hussain, O.Md., Reddy, K.T.R., Reddy, P.S., Uthana, S., Naidu, B.S. and Reddy, P.J., Optical Materials, 5, 63-68 (1996).
12) Ghosh, D.K., Samantha, L.K. and Bhar, G.C., Pramana, 23(4), 485 (1984).
13) CRC Handbook of Physics and Chemistry, 76th edition.
14) Sanderson, R. T. (1983). "Electronegativity and bond energy". Journal of the American Chemical Society 105: 2259
15) Murthy, Y.S., Naidu, B.S. and Reddy, P.J., “Material Science &Engineering,”B38, 175 (1991)
Related Articles -
Band Energy Gap, Composition, Electro Negativity, Molecular weight, density, optical polarizability.,