Amazines Free Article Archive
www.amazines.com - Saturday, June 28, 2025
Read about the most recent changes and happenings at Amazines.com
Log into your account or register as a new author. Start submitting your articles right now!
Search our database for articles.
Subscribe to receive articles emailed straight to your email account. You may choose multiple categories.
View our newest articles submitted by our authors.
View our most top rated articles rated by our visitors.
* Please note that this is NOT the ARTICLE manager
Add a new EZINE, or manage your EZINE submission.
Add fresh, free web content to your site such as newest articles, web tools, and quotes with a single piece of code!
Home What's New? Submit/Manage Articles Latest Posts Top Rated Article Search
Google
Subscriptions Manage Ezines
CATEGORIES
 Article Archive
 Advertising (133577)
 Advice (161673)
 Affiliate Programs (34799)
 Art and Culture (73858)
 Automotive (145724)
 Blogs (75621)
 Boating (9851)
 Books (17224)
 Buddhism (4130)
 Business (1331047)
 Business News (426461)
 Business Opportunities (366525)
 Camping (10974)
 Career (72796)
 Christianity (15854)
 Collecting (11638)
 Communication (115089)
 Computers (241958)
 Construction (38976)
 Consumer (49954)
 Cooking (17080)
 Copywriting (6734)
 Crafts (18203)
 Cuisine (7549)
 Current Affairs (20323)
 Dating (45910)
 EBooks (19704)
 E-Commerce (48279)
 Education (185536)
 Electronics (83525)
 Email (6438)
 Entertainment (159864)
 Environment (29004)
 Ezine (3040)
 Ezine Publishing (5454)
 Ezine Sites (1551)
 Family & Parenting (111011)
 Fashion & Cosmetics (196613)
 Female Entrepreneurs (11853)
 Feng Shui (134)
 Finance & Investment (310639)
 Fitness (106492)
 Food & Beverages (63058)
 Free Web Resources (7941)
 Gambling (30227)
 Gardening (25207)
 Government (10519)
 Health (630186)
 Hinduism (2206)
 Hobbies (44083)
 Home Business (91752)
 Home Improvement (251307)
 Home Repair (46261)
 Humor (4729)
 Import - Export (5462)
 Insurance (45104)
 Interior Design (29637)
 International Property (3488)
 Internet (191033)
 Internet Marketing (146690)
 Investment (22864)
 Islam (1161)
 Judaism (1352)
 Law (80500)
 Link Popularity (4596)
 Manufacturing (20933)
 Marketing (99328)
 MLM (14140)
 Motivation (18237)
 Music (27000)
 New to the Internet (9498)
 Non-Profit Organizations (4049)
 Online Shopping (129743)
 Organizing (7813)
 Party Ideas (11855)
 Pets (38165)
 Poetry (2229)
 Press Release (12691)
 Public Speaking (5643)
 Publishing (7566)
 Quotes (2407)
 Real Estate (126912)
 Recreation & Leisure (95497)
 Relationships (87678)
 Research (16182)
 Sales (80369)
 Science & Technology (110299)
 Search Engines (23525)
 Self Improvement (153318)
 Seniors (6224)
 Sexuality (36012)
 Small Business (49393)
 Software (83054)
 Spiritual (23537)
 Sports (116156)
 Tax (7664)
 Telecommuting (34070)
 Travel & Tourism (308300)
 UK Property Investment (3123)
 Video Games (13382)
 Web Traffic (11803)
 Website Design (56951)
 Website Promotion (36671)
 World News (1000+)
 Writing (35853)
Author Spotlight
LINDA HOLLAND

I am a passionate article and blog writer based in South Africa. With a love for life and a strong d...more
AREESH ISHTIAQ

Areesh Ishtiaq a Top Rated SEO and Digital Marketing Guru on Upwork, working as a project manager fo...more
RAJESH THAPALIYA

I am in Nepalest tourism industery working since 2000 as a trekking porter to the senior tour leader...more
DESIGNPLUZ PTY LTD

Designpluz has steadily matured from a passionate graphics design start-up, into a full service digi...more
SHOVON JOARDER

Shovon Joarder has been working as Freelance Marketing Project Manager for over four years. He also ...more


3D scanner - Tool Sets - Work Bench by wgre ergrg





Article Author Biography
3D scanner - Tool Sets - Work Bench by
Article Posted: 12/28/2010
Article Views: 185
Articles Written: 1512
Word Count: 5828
Article Votes: 0
AddThis Social Bookmark Button

3D scanner - Tool Sets - Work Bench


 
Business,Business News,Business Opportunities
Functionality The purpose of a 3D scanner is usually to create a point cloud of geometric samples on the surface of the subject. These points can then be used to extrapolate the shape of the subject (a process called reconstruction). If color information is collected at each point, then the colors on the surface of the subject can also be determined. 3D scanners are very analogous to cameras. Like cameras, they have a cone-like field of view, and like cameras, they can only collect information about surfaces that are not obscured. While a camera collects color information about surfaces within its field of view, 3D scanners collect distance information about surfaces within its field of view. The icture produced by a 3D scanner describes the distance to a surface at each point in the picture. If a spherical coordinate system is defined in which the scanner is the origin and the vector out from the front of the scanner is =0 and =0, then each point in the picture is associated with a and . Together with distance, which corresponds to the r component, these spherical coordinates fully describe the three dimensional position of each point in the picture, in a local coordinate system relative to the scanner. For most situations, a single scan will not produce a complete model of the subject. Multiple scans, even hundreds, from many different directions are usually required to obtain information about all sides of the subject. These scans have to be brought in a common reference system, a process that is usually called alignment or registration, and then merged to create a complete model. This whole process, going from the single range map to the whole model, is usually known as the 3D scanning pipeline. Technology The two types of 3D scanners are contact and non-contact. Non-contact 3D scanners can be further divided into two main categories, active scanners and passive scanners. There are a variety of technologies that fall under each of these categories. Contact Contact 3D scanners probe the subject through physical touch. A CMM (coordinate measuring machine) is an example of a contact 3D scanner. It is used mostly in manufacturing and can be very precise. The disadvantage of CMMs though, is that it requires contact with the object being scanned. Thus, the act of scanning the object might modify or damage it. This fact is very significant when scanning delicate or valuable objects such as historical artifacts. The other disadvantage of CMMs is that they are relatively slow compared to the other scanning methods. Physically moving the arm that the probe is mounted on can be very slow and the fastest CMMs can only operate on a few hundred hertz. In contrast, an optical system like a laser scanner can operate from 10 to 500 kHz. Other examples are the hand driven touch probes used to digitize clay models in computer animation industry. Non-contact active Active scanners emit some kind of radiation or light and detect its reflection in order to probe an object or environment. Possible types of emissions used include light, ultrasound or x-ray. Time-of-flight This lidar scanner may be used to scan buildings, rock formations, etc., to produce a 3D model. The lidar can aim its laser beam in a wide range: its head rotates horizontally, a mirror flips vertically. The laser beam is used to measure the distance to the first object on its path. The time-of-flight 3D laser scanner is an active scanner that uses laser light to probe the subject. At the heart of this type of scanner is a time-of-flight laser rangefinder. The laser rangefinder finds the distance of a surface by timing the round-trip time of a pulse of light. A laser is used to emit a pulse of light and the amount of time before the reflected light is seen by a detector is timed. Since the speed of light c is a known, the round-trip time determines the travel distance of the light, which is twice the distance between the scanner and the surface. If t is the round-trip time, then distance is equal to . The accuracy of a time-of-flight 3D laser scanner depends on how precisely we can measure the t time: 3.3 picoseconds (approx.) is the time taken for light to travel 1 millimetre. The laser rangefinder only detects the distance of one point in its direction of view. Thus, the scanner scans its entire field of view one point at a time by changing the range finder direction of view to scan different points. The view direction of the laser rangefinder can be changed either by rotating the range finder itself, or by using a system of rotating mirrors. The latter method is commonly used because mirrors are much lighter and can thus be rotated much faster and with greater accuracy. Typical time-of-flight 3D laser scanners can measure the distance of 10,000~100,000 points every second. Time-of-flight devices are also available in a 2D configuration. This is referred to as a Time-of-flight camera. Triangulation Principle of a laser triangulation sensor. Two object positions are shown. point cloud generation using triangulation with a laser stripe. The triangulation 3D laser scanner is also an active scanner that uses laser light to probe the environment. With respect to time-of-flight 3D laser scanner the triangulation laser shines a laser on the subject and exploits a camera to look for the location of the laser dot. Depending on how far away the laser strikes a surface, the laser dot appears at different places in the camera field of view. This technique is called triangulation because the laser dot, the camera and the laser emitter form a triangle. The length of one side of the triangle, the distance between the camera and the laser emitter is known. The angle of the laser emitter corner is also known. The angle of the camera corner can be determined by looking at the location of the laser dot in the camera field of view. These three pieces of information fully determine the shape and size of the triangle and gives the location of the laser dot corner of the triangle. In most cases a laser stripe, instead of a single laser dot, is swept across the object to speed up the acquisition process. The National Research Council of Canada was among the first institutes to develop the triangulation based laser scanning technology in 1978. Notes on time-of-flight and triangulation scanners Time-of-flight and triangulation range finders each have strengths and weaknesses that make them suitable for different situations. The advantage of time-of-flight range finders is that they are capable of operating over very long distances, on the order of kilometers. These scanners are thus suitable for scanning large structures like buildings or geographic features. The disadvantage of time-of-flight range finders is their accuracy. Due to the high speed of light, timing the round-trip time is difficult and the accuracy of the distance measurement is relatively low, on the order of millimeters. Triangulation range finders are exactly the opposite. They have a limited range of some meters, but their accuracy is relatively high. The accuracy of triangulation range finders is on the order of tens of micrometers. Time of flight scanners accuracy can be lost when the laser hits the edge of an object because the information that is sent back to the scanner is from two different locations for one laser pulse. The coordinate relative to the scanners position for a point that has hit the edge of an object will be calculated based on an average and therefore will put the point in the wrong place. When using a high resolution scan on an object the chances of the beam hitting an edge are increased and the resulting data will show noise just behind the edges of the object. Scanners with a smaller beam width will help to solve this problem but will be limited by range as the beam width will increase over distance. Software can also help by determining that the first object to be hit by the laser beam should cancel out the second. At a rate of 10,000 sample points per second, low resolution scans can take less than a second, but high resolution scans, requiring millions of samples, can take minutes for some time-of-flight scanners. The problem this creates is distortion from motion. Since each point is sampled at a different time, any motion in the subject or the scanner will distort the collected data. Thus, it is usually necessary to mount both the subject and the scanner on stable platforms and minimize vibration. Using these scanners to scan objects in motion is very difficult. Recently, there has been research on compensating for distortion from small amounts of vibration. When scanning in one position for any length of time slight movement can occur in the scanner position due to changes in temperature. If the scanner is set on a tripod and there is strong sunlight on one side of the scanner then that side of the tripod will expand and slowly distort the scan data from one side to another. Some laser scanners have level compensator built into them to counteract any movement of the scanner during the scan process. Conoscopic holography In a Conoscopic system, a laser beam is projected onto the surface and then the immediate reflection along the same ray-path are put through a conoscopic crystal and projected onto a CCD. The result is a diffraction pattern, that can be frequency analyzed to determine the distance to the measured surface. The main advantage with Conoscopic Holography is that only a single ray-path is needed for measuring, thus giving an opportunity to measure for instance the depth of a finely drilled hole. Hand-held laser Hand-held laser scanners create a 3D image through the triangulation mechanism described above: a laser dot or line is projected onto an object from a hand-held device and a sensor (typically a charge-coupled device or position sensitive device) measures the distance to the surface. Data is collected in relation to an internal coordinate system and therefore to collect data where the scanner is in motion the position of the scanner must be determined. The position can be determined by the scanner using reference features on the surface being scanned (typically adhesive reflective tabs) or by using an external tracking method. External tracking often takes the form of a laser tracker (to provide the sensor position) with integrated camera (to determine the orientation of the scanner) or a photogrammetric solution using 3 or more cameras providing the complete Six degrees of freedom of the scanner. Both techniques tend to use infrared Light-emitting diodes attached to the scanner which are seen by the camera(s) through filters providing resilience to ambient lighting. Data is collected by a computer and recorded as data points within Three-dimensional space, with processing this can be converted into a triangulated mesh and then a Computer-aided design model, often as Nonuniform rational B-spline surfaces. Hand-held laser scanners can combine this data with passive, visible-light sensors - which capture surface textures and colors - to build (or "reverse engineer") a full 3D model. Structured light Main article: Structured-light 3D scanner Structured-light 3D scanners project a pattern of light on the subject and look at the deformation of the pattern on the subject. The pattern may be one dimensional or two dimensional. An example of a one dimensional pattern is a line. The line is projected onto the subject using either an LCD projector or a sweeping laser. A camera, offset slightly from the pattern projector, looks at the shape of the line and uses a technique similar to triangulation to calculate the distance of every point on the line. In the case of a single-line pattern, the line is swept across the field of view to gather distance information one strip at a time. An example of a two-dimensional pattern is a grid or a line stripe pattern. A camera is used to look at the deformation of the pattern, and an algorithm is used to calculate the distance at each point in the pattern. Consider an array of parallel vertical laser stripes sweeping horizontally across a target. In the simplest case, one could analyze an image and assume that the left-to-right sequence of stripes reflects the sequence of the lasers in the array, so that the leftmost image stripe is the first laser, the next one is the second laser, and so on. In non-trivial targets having holes, occlusions, and rapid depth changes, however, this sequencing breaks down as stripes are often hidden and may even appear to change order, resulting in laser stripe ambiguity. This problem can be solved using algorithms for multistripe laser triangulation. Structured-light scanning is still a very active area of research with many research papers published each year. The advantage of structured-light 3D scanners is speed. Instead of scanning one point at a time, structured light scanners scan multiple points or the entire field of view at once. This reduces or eliminates the problem of distortion from motion. Some existing systems are capable of scanning moving objects in real-time. A real-time scanner a using digital fringe projection and phase-shifting technique (a various structured light method) was developed, to capture, reconstruct, and render high-density details of dynamically deformable objects (such as facial expressions) at 40 frames per second. Recently, another scanner is developed. Different patterns can be applied to this system. The frame rate for capturing and data processing achieves 120 frames per second. It can also scan isolated surfaces, for example two moving hands. Modulated light Modulated light 3D scanners shine a continually changing light at the subject. Usually the light source simply cycles its amplitude in a sinusoidal pattern. A camera detects the reflected light and the amount the pattern is shifted by determines the distance the light traveled. Modulated light also allows the scanner to ignore light from sources other than a laser, so there is no interference. Computed tomography Computed tomography (CT) is a medical imaging method which generates a three-dimensional image of the inside of an object from a large series of two-dimensional X-ray images. CT produces a volume of data which can be manipulated, reformatted in various planes, or even as volumetric (3D) representations of structures. Although most common in medicine, CT is also used in other fields, such as nondestructive materials testing, reverse engineering, or to study biological and paleontological specimens Microtomography Microtomography, like Computed tomography, scanners use x-rays to create cross-sections of a 3D-object that later can be used to recreate a virtual model without destroying the original model. The term micro is used to indicate that the pixel sizes of the cross-sections are in the micrometer range. These pixel sizes have also resulted in the terminology Micro-computed tomography, Micro-CT, X-ray tomographic microscopy, XMT, etc. All of these names generally represent the same class of instruments. These scanners are typically used for small animals, biomedical samples, foams, composites, foods, microfossils, and other studies for which minute detail is desired. In recent years the concept of Nanotomography (Nano-CT) has been introduced which scans in the nanometer range. Magnetic resonance imaging Magnetic resonance imaging (MRI) is primarily a medical imaging technique most commonly used in radiology to visualize the internal structure and function of the body. MRI provides much greater contrast between the different soft tissues of the body than computed tomography (CT) does, making it especially useful in neurological (brain), musculoskeletal, cardiovascular, and oncological (cancer) imaging. Unlike CT, it uses no ionizing radiation, but uses a powerful magnetic field to align the nuclear magnetization of (usually) hydrogen atoms in water in the body. Non-contact passive Passive scanners do not emit any kind of radiation themselves, but instead rely on detecting reflected ambient radiation. Most scanners of this type detect visible light because it is a readily available ambient radiation. Other types of radiation, such as infrared could also be used. Passive methods can be very cheap, because in most cases they do not need particular hardware. Stereoscopic Stereoscopic systems usually employ two video cameras, slightly apart, looking at the same scene. By analyzing the slight differences between the images seen by each camera, it is possible to determine the distance at each point in the images. This method is based on human stereoscopic vision. Photometric Photometric systems usually use a single camera, but take multiple images under varying lighting conditions. These techniques attempt to invert the image formation model in order to recover the surface orientation at each pixel. Silhouette These types of 3D scanners use outlines created from a sequence of photographs around a three-dimensional object against a well contrasted background. These silhouettes are extruded and intersected to form the visual hull approximation of the object. With these kinds of techniques some kind of concavities of an object (like the interior of a bowl) are not detected. User assisted (image-based modeling) There are other methods that, based on the user assisted detection and identification of some features and shapes on a set of different pictures of an object are able to build an approximation of the object itself. This kind of techniques are useful to build fast approximation of simple shaped objects like buildings. Various commercial packages are available like iModeller, D-Sculptor or Autodesk ImageModeler. This sort of 3D scanning is based on the principles of photogrammetry. It is also somewhat similar in methodology to panoramic photography, except that the photos are taken of one object on a three-dimensional space in order to replicate it instead of taking a series of photos from one point in a three-dimensional space in order to replicate the surrounding environment. Reconstruction, or Modeling From point clouds The point clouds produced by 3D scanners are usually not used directly, although for simple visualization and measurement in the architecture and construction world, points may suffice. Most applications instead use polygonal 3D models, NURBS surface models, or editable feature-based CAD models (aka Solid models). The process of converting a point cloud into a usable 3D model in any of the forms described above is called 'reconstruction or "modeling"'. Polygon mesh models In a polygonal representation of a shape, a curved surface is modeled as many small faceted flat surfaces (think of a sphere modeled as a disco ball). Polygon models -- also called Mesh models, are useful for visualization, for some CAM (i.e., machining), but are generally "heavy" ( i.e., very large data sets), and are relatively un-editable in this form. Reconstruction to polygonal model involves finding and connecting adjacent points with straight lines in order to create a continuous surface. Many applications, both free and non free, are available for this purpose (eg. MeshLab, kubit PointCloud for AutoCAD, photomodeler, imagemodel, PolyWorks, Rapidform, Geomagic, Imageware, Rhino, etc.). Surface models The next level of sophistication in modeling involves using a quilt of curved surface patches to model our shape. These might be NURBS, TSplines or other curved representations of curved topology. Using NURBS, our sphere is a true mathematical sphere. Some applications offer patch layout by hand but the best in class offer both automated patch layout and manual layout. These patches have the advantage of being lighter and more manipulable when exported to CAD. Surface models are somewhat editable, but only in a sculptural sense of pushing and pulling to deform the surface. This representation lends itself well to modeling organic and artistic shapes. Providers of surface modelers include Rapidform, Geomagic, Rhino, Maya, T Splines etc. Solid CAD models From an engineering/manufacturing perspective, the ultimate representation of a digitized shape is the editable, parametric CAD model. After all, CAD is the common "language" of industry to describe, edit and maintain the shape of the enterprise's assets. In CAD, our sphere is described by parametric features which are easily edited by changing a value(e.g., centerpoint and radius). These CAD models describe not simply the envelope or shape of the object, but CAD models also embody the "design intent" (i.e., critical features and their relationship to other features). An example of design intent not evident in the shape alone might be a brake drum's lug bolts, which must be concentric with the hole in the center of the drum. This knowledge would drive the sequence and method of creating the CAD model; a designer with an awareness of this relationship would not design the lug bolts referenced to the outside diameter, but instead, to the center. A modeler creating a CAD model will want to include both Shape and design intent in the complete CAD model. Vendors offer different approaches to getting to the parametric CAD model. Some export the NURBS surfaces and leave it to the CAD designer to complete the model in CAD(e.g., Geomagic, Imageware, Rhino). Others use the scan data to create an editable and verifiable feature based model that is imported into CAD with full feature tree intact, yielding a complete, native CAD model, capturing both shape and design intent (e.g. Rapidform). Still other CAD applications are robust enough to manipulate limited points or polygon models within the CAD environment(e.g., Catia). From a group of 2D slices CT, MRI, or Micro-CT scanners do not produce point clouds but a set of 2D slices which are then 'stacked together' to produce a 3D representation. There are several ways to do this depending on the output required: Volume rendering Different parts of an object usually have different threshold values or greyscale densities. From this, a 3-dimensional model can be constructed and displayed on screen. Multiple models can be constructed from various different thresholds, allowing different colors to represent each component of the object. Volume rendering is usually only used for visualisation of the scanned object. Image segmentation Where different structures have similar threshold/greyscale values, it can become impossible to separate them simply by adjusting volume rendering parameters. The solution is called segmentation, a manual or automatic procedure that can remove the unwanted structures from the image. Image segmentation software usually allows export of the segmented structures in CAD or STL format for further manipulation. Image-based meshing When using 3D image data for computational analysis (e.g. CFD and FEA), simply segmenting the data and meshing from CAD can become time consuming, and virtually intractable for the complex topologies typical of image data. The solution is called image-based meshing, an automated process of generating an accurate and realistic geometrical description of the scan data. Applications Material processing and production Laser scanning describes a method where a surface is sampled or scanned using laser technology. Several areas of application exist that mainly differ in the power of the lasers that are used, and in the results of the scanning process. Lasers with low power are used when the scanned surface doesn't have to be influenced, e.g. when it has to be digitized. Confocal or 3D laser scanning are methods to get information about the scanned surface. Depending on the power of the laser, its influence on a working piece differs: lower power values are used for laser engraving, where material is partially removed by the laser. With higher powers the material becomes fluid and laser welding can be realized, or if the power is high enough to remove the material completely, then laser cutting can be performed. Also for rapid prototyping a laser scanning procedure is used when for example a prototype is generated by laser sintering. The principle that is used for all these applications is the same: software that runs on a PC or an embedded system and that controls the complete process is connected with a scanner card. That card converts the received vector data to movement information which is sent to the scanhead. This scanhead consists of two mirrors that are able to deflect the laser beam in one level (X- and Y-coordinate). The third dimension is - if necessary - realized by a specific optic that is able to move the laser's focal point in the depth-direction (Z-axis). The third dimension is needed for some special applications like the rapid prototyping where an object is built up layer by layer or for in-glass-marking where the laser has to influence the material at specific positions within it. For these cases it is important that the laser has as small a focal point as possible. For enhanced laser scanning applications and/or high material throughput during production, scanning systems with more than one scanhead are used. Here the software has to control what is done exactly within such a multihead application: it is possible that all available heads have to mark the same to finish processing faster or that the heads mark one single job in parallel where every scanhead performs a part of the job in case of large working areas. Structured light projection systems are also used for solar cell flatness metrology enabling stress calculation with throughput in excess of 2000 wafers per hour. Construction industry and civil engineering As-built drawings of Bridges, Industrial Plants, and Monuments Documentation of historical sites Site modeling and lay outing Quality control Quantity Surveys Freeway Redesign Establishing a bench mark of pre-existing shape/state in order to detect structural changes resulting from exposure to extreme loadings such as earthquake, vessel/truck impact or fire. Create GIS (Geographic information system) maps and Geomatics. Benefits of 3D scanning 3D model scanning could benefit the design process if: Increase effectiveness working with complex parts and shapes. Help with design of products to accommodate someone else part. If CAD models are outdated, a 3D scan will provide an updated version Replacement of missing or older parts Entertainment 3D scanners are used by the entertainment industry to create digital 3D models for both movies and video games. In cases where a real-world equivalent of a model exists, it is much faster to scan the real-world object than to manually create a model using 3D modeling software. Frequently, artists sculpt physical models of what they want and scan them into digital form rather than directly creating digital models on a computer. Reverse engineering Reverse engineering of a mechanical component requires a precise digital model of the objects to be reproduced. Rather than a set of points a precise digital model can be represented by a polygon mesh, a set of flat or curved NURBS surfaces, or ideally for mechanical components, a CAD solid model. A 3D scanner can be used to digitize free-form or gradually changing shaped components as well as prismatic geometries whereas a coordinate measuring machine is usually used only to determine simple dimensions of a highly prismatic model. These data points are then processed to create a usable digital model, usually using specialized reverse engineering software (see Modeling; Solid Models, above). Cultural Heritage An example of real object replication by means of 3D scanning and 3D printing There have been many research projects undertook via the scanning of historical sites and artifacts both for documentation and analysis purposes. The combined use of 3D scanning and 3D printing technologies allows the replication of real objects without the use of traditional plaster casting techniques, that in many cases can be too invasive for being performed on precious or delicate cultural heritage artifacts. In the side figure the gargoyle model on the left was digitally acquired by using a 3D scanner and the produced 3D data was processed using MeshLab. The resulting digital 3D model, shown in the screen of the laptop, was used by a rapid prototyping machine to create a real resin replica of original object. Michelangelo In 1999, two different research groups started scanning Michelangelo's statues. Stanford University with a group led by Marc Levoy used a custom laser triangulation scanner built by Cyberware to scan Michelangelo statues in Florence, notably the David, the Prigioni and the four statues in The Medici Chapel. The scans produced a data point density of one sample per 0.25 mm, detailed enough to see Michelangelo chisel marks. These detailed scans produced a huge amount of data (up to 32 gigabytes) and processing the data from his scans took 5 months. Approximately in the same period a research group from IBM, led by H. Rushmeier and F. Bernardini scanned the Piet of Florence acquiring both geometric and color details. Monticello In 2002, David Luebke, et al. scanned Thomas Jefferson Monticello. A commercial time of flight laser scanner, the DeltaSphere 3000, was used. The scanner data was later combined with color data from digital photographs to create the Virtual Monticello, and the Jefferson Cabinet exhibits in the New Orleans Museum of Art in 2003. The Virtual Monticello exhibit simulated a window looking into Jefferson Library. The exhibit consisted of a rear projection display on a wall and a pair of stereo glasses for the viewer. The glasses, combined with polarized projectors, provided a 3D effect. Position tracking hardware on the glasses allowed the display to adapt as the viewer moves around, creating the illusion that the display is actually a hole in the wall looking into Jefferson Library. The Jefferson Cabinet exhibit was a barrier stereogram (essentially a non-active hologram that appears different from different angles) of Jefferson Cabinet Cuneiform tablets In 2003, Subodh Kumar, et al. undertook the 3D scanning of ancient cuneiform tablets. Again, a laser triangulation scanner was used. The tablets were scanned on a regular grid pattern at a resolution of 0.025 mm. lastico di Roma antica In 2005, Gabriele Guidi, et al. scanned the lastico di Roma antica, a model of Rome created in the last century. Neither the triangulation method, nor the time of flight method satisfied the requirements of this project because the item to be scanned was both large and contained small details. They found though, that a modulated light scanner was able to provide both the ability to scan an object the size of the model and the accuracy that was needed. The modulated light scanner was supplemented by a triangulation scanner which was used to scan some parts of the model. Dental CAD/CAM Many Chairside dental CAD/CAM systems and Dental Laboratory CAD/CAM systems use 3D Scanner technologies to capture the 3D surface of a dental preparation (either in vivo or in vitro), in order to produce a restoration digitally using CAD software and ultimately produce the final restoration using a CAM technology (such as a CNC milling machine, or 3D printer). The chairside systems are designed to facilitate the 3D scanning of a preparation in vivo and produce the restoration (such as a Crown, Onlay, Inlay or Veneer). Orthotics CAD/CAM Many orthotists also use 3D scanners in order to capture the 3D shape of a patient. It gradually supplants tedious plaster cast. CAD/CAM software are then used to design and manufacture the orthosis or prosthesis. Quality Assurance / Industrial Metrology The digitalization of real-world objects is of vital importance in various application domains. This method is especially applied in industrial quality assurance to measure the geometric dimension accuracy. Industrial processes such as assembly are complex, highly automated and typically based on CAD (Computer Aided Design) data. The problem is that the same degree of automation is also required for quality assurance. It is, for example, a very complex task to assemble a modern car, since it consists of many parts that must fit together at the very end of the production line. The optimal performance of this process is guaranteed by quality assurance systems. Especially the geometry of the metal parts must be checked in order to assure that they have the correct dimensions, fit together and finally work reliably. Within highly automated processes, the resulting geometric measures are transferred to machines that manufacture the desired objects. Due to mechanical uncertainties and abrasions, the result may differ from its digital nominal. In order to automatically capture and evaluate these deviations, the manufactured part must be digitized as well. For this purpose, 3D scanners are applied to generate point samples from the object surface which are finally compared against the nominal data . The process of comparing 3D data against a CAD model is referred to as CAD-Compare, and can be a useful technique for applications such as determining wear patterms on molds and tooling, determining accuracy of final build, analyzing gap and flush, or analyzing highly complex sculpted surfaces. At present, laser triangulation scanners, structured light and contact scanning are the predominant technologies employed for industrial purposes, with contact scanning remaining the slowest, but overall most accurate option. See also 3D computer graphics 3D modeling Computer vision Confocal laser scanning microscopy Interferometry Laser rangefinder Time-of-flight camera References Brian Curless, "From Range Scans to 3D Models", ACM SIGGRAPH Computer Graphics, Vol. 33, Issue 4, Nov 2000, pp.3841. Katsushi Lkeuchi, "Modeling from Reality," Third International Conference on 3-D Digital Imaging and Modeling, 2001, pp.117124. ^ Fausto Bernardini, Holly E. Rushmeier: The 3D Model Acquisition Pipeline. Comput. Graph. Forum 21(2): 149-172 (2002), (pdf). ^ Roy Mayer, Scientific Canadian: Invention and Innovation From Canada's National Research Council, Vancouver: Raincoast Books, 1999. ^ Franois Blais, Michel Picard, Guy Godin, "Accurate 3D acquisition of freely moving objects," Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004, pp.422-429. ^ Song Zhang, Peisen Huang, "High-resolution, real-time 3-D shape measurement," Optical Engineering, 2006, pp.123601. (pdf) ^ 3D imaging lab, University of Kentucky http://www.vis.uky.edu/~realtime3d/ ^ W. J. Walecki, F. Szondy and M. M. Hilali, "Fast in-line surface topography metrology enabling stress calculation for solar cell manufacturing for throughput in excess of 2000 wafers per hour" 2008 Meas. Sci. Technol. 19 025302 (6pp) doi:10.1088/0957-0233/19/2/025302 ^ Marc Levoy, Jeremy Ginsberg, Jonathan Shade, Duane Fulk, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, "The Digital Michelangelo Project: 3D Scanning of Large Statues," Proceedings of the 27th annual conference on Computer graphics and interactive techniques, 2000, pp.131-144. (pdf) ^ David Luebke, Christopher Lutz, Rui Wang, and Cliff Woolley, canning Monticello, 2002, http://www.cs.virginia.edu/Monticello. ^ Subodh Kumar, Dean Snyder, Donald Duncan, Jonathan Cohen, Jerry Cooper, "Digital Preservation of Ancient Cuneiform Tablets Using 3D-Scanning," Fourth International Conference on 3-D Digital Imaging and Modeling, 2003, pp.326-333. ^ Gabriele Guidi, Laura Micoli, Michele Russo, Bernard Frischer, Monica De Simone, Alessandro Spinetti, Luca Carosso, "3D digitization of a large model of imperial Rome," Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, pp.565-572. ^ Christian Teutsch, "Model-based Analysis and Evaluation of Point Sets from Optical 3D Laser Scanners", PhD Dissertation, 2007. External links Real-time 3D System 3D Photography Course Notes MeshLab - Open Source program for aligning, merging, cleaning up and simplifying scanned meshes Scanalyze - Open Source program for aligning and merge range data Manual 3D scanner 3D scan technology description Free 3D Scanner Routines -- Software from Laurence Hassebrook at University of Kentucky for use with PowerShot or Logitech WebCam. Categories: Computing input devices

3D imagingHidden categories: Articles lacking in-text citations from April 2009

All articles lacking in-text citations

I am an expert from tool-cabinet-china.com, while we provides the quality product, such as Tool Sets , Work Bench, Roller Cabinet,and more.

Related Articles - Tool Sets, Work Bench,

Email this Article to a Friend!

Receive Articles like this one direct to your email box!
Subscribe for free today!

 Rate This Article  
Completely useless, should be removed from directory.
Minimal useful information.
Decent and informative.
Great article, very informative and helpful.
A 'Must Read'.

 

Do you Agree or Disagree? Have a Comment? POST IT!

 Reader Opinions 
Submit your comments and they will be posted here.
Make this comment or to the Author only:
Name:
Email:
*Your email will NOT be posted. This is for administrative purposes only.
Comments: *Your Comments WILL be posted to the AUTHOR ONLY if you select PRIVATE and to this PUBLIC PAGE if you select PUBLIC, so write accordingly.
 
Please enter the code in the image:



 Author Login 
LOGIN
Register for Author Account

 

Advertiser Login

 

ADVERTISE HERE NOW!
   Limited Time $60 Offer!
   90  Days-1.5 Million Views  

 

Great Paranormal Romance


STEPHEN BYE

Stephen Bye is a fiction writer. His most recent novels are a 5-book “The Developer” series which be...more
GENE MYERS

Author of four books and two screenplays; frequent magazine contributor. I have four other books "in...more
STEVERT MCKENZIE

Stevert Mckenzie, Travel Enthusiast. ...more
TIM FAY

After 60-plus years of living, I am just trying to pass down some of the information that I have lea...more
ADRIAN JOELE

I have been involved in nutrition and weight management for over 12 years and I like to share my kn...more
LAURA JEEVES

At LeadGenerators, we specialise in content-led Online Marketing Strategies for our clients in the t...more
MICHAEL BRESCIANI

Rev Bresciani is the author of two Christian books. One book is an important and concisely written b...more
LEVAL AINAH

I am an internet marketer and also an educator. My goal is to help others who are looking to improve...more
PAUL PHILIPS

For more articles, blog messages & videos and a free e-book download go to www.NewParadigm.ws your p...more
ALEX BELSEY

I am the editor of QUAY Magazine, a B2B publication based in the South West of the UK. I am also the...more

HomeLinksAbout UsContact UsTerms of UsePrivacy PolicyFAQResources
Copyright © 2025, All rights reserved.
Some pages may contain portions of text relating to certain topics obtained from wikipedia.org under the GNU FDL license