Authors: V.Rama Murthy & Alla.Srivani Research Scholar Rayalaseema University P.G Department of Physics, T.J.P.S College Guntur-6 A.P India Abstract: Nitride III-V Ternary semiconductors are very important as an x of a constituent in the semiconductor is going to have significant changes in calculating Thermal Physical Property like Melting point. These Ternary Compounds can be derived from binary compounds by replacing one half of the atoms in one sub lattice by lower valence atoms, the other half by higher valence atoms and maintaining average number of valence electrons per atom. The subscript X refers to the alloy content or concentration of the material, which describes proportion of the material added and replaced by alloy material. This paper represents investigation of Melting point of Nitride III-V Ternary Semiconductors Keywords: Composition, Thermal property, Melting point, III-V Ternary semiconductors, Nitride group Introduction: 1) In this opening talk of Investigation of Melting point of Arsenide III-V Ternary Semiconductors dopant is added to the semiconductor to variate most important Physical property 2) The continuous variation of Thermal Physical properties like Melting point of ternary compounds with relative concentration of constituents is of utmost utility in development of solid-state technology. 3) In the present work, the solid solutions belonging to Arsenide III-V Ternary Semiconductors have been investigated. In order to have better understanding of performance of these solid solutions for any particular application, it becomes quite necessary to work on the Thermal Physical properties like melting point 4) Recently no other class of material of semiconductors has attracted so much scientific and commercial attention like the Arsenide III-V Ternary compounds. 5) Doping of component in a Binary semiconductors and changing the composition of do pant has actually resulted in lowering of Melting point. 6) Thus effect of do pant decreases the Melting point and finds extensive applications 7) The present investigation relates Thermal Physical property like Melting point with variation of composition for Arsenide III-V Ternary Semiconductor. 8) The fair agreement between calculated and reported values of Melting point of Arsenide III-V Ternary semiconductors give further extension Physical Properties for Ternary semiconductors. 9) The present work opens new line of approach to Thermal Physical property like Melting point in Arsenide III-V Ternary Semiconductors Objective: The main Objective of this paper is to calculate Melting point of Arsenide III-V Ternary Semiconductors Purpose: The purpose of study is to calculate Melting point of Nitride III-V Ternary Semiconductors This paper includes Melting point variation with Composition of Dopant Theoretical Impact: Compound AlAs GaAs InAs InP GaP AlSb InSb GaN AlN InN AlP GaSb Melting point 2013 1510 1215 1330 1750 1330 798 1500 2500 1200 2100 980 Compound 1) GaAsxN1-x=GaAs+GaN M.P OF Ternary 1500 1501 1501.5 1502 1502.5 1503 1503.5 1504 1504.5 1505 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1505.5 1506 1506.5 1507 1507.5 1508 1508.5 1509 1509.5 1510 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 2) GaAs1-xNx=GaN+GaAs M.P OF Ternary 1510 1509 1508.5 1508 1507.5 1507 1506.5 1506 1505.5 1505 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1504.5 1504 1503.5 1503 1502.5 1502 1501.5 1501 1500.5 1500 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 3) Al1-xGaxN=GaN+AlN M.P OF Ternary 2500 2400 2350 2300 2250 2200 2150 2100 2050 2000 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1950 1900 1850 1800 1750 1700 1650 1600 1550 1500 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 4) InxGa1-xN=InN+GaN M.P OF Ternary 1500 1470 1455 1440 1425 1410 1395 1380 1365 1350 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1335 1320 1305 1290 1275 1260 1245 1230 1215 1200 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 5) In1-xGaxN=GaN+InN M.P OF Ternary 1200 1230 1245 1260 1275 1290 1305 1320 1335 1350 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1365 1380 1395 1410 1425 1440 1455 1470 1485 1500 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 6) InAsxN1-x=InAS+InN M.P OF Ternary 1200 1201.5 1202.3 1203 1203.8 1204.5 1205.3 1206 1206.8 1207.5 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1208.3 1209 1209.8 1210.5 1211.3 1212 1212.8 1213.5 1214.3 1215 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 7) InAs1-xNx=InN+InAs M.P OF Ternary 1215 1213.5 1212.8 1212 1211.3 1210.5 1209.8 1209 1208.3 1207.5 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1206.8 1206 1205.3 1204.5 1203.8 1203 1202.3 1201.5 1200.8 1200 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 8) Al1-xInxN=InN+AlN M.P OF Ternary 2500 2370 2305 2240 2175 2110 2045 1980 1915 1850 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1785 1720 1655 1590 1525 1460 1395 1330 1265 1200 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 9) GaP1-xNx=GaN+GaP M.P OF Ternary 1750 1725 1712.5 1700 1687.5 1675 1662.5 1650 1637.5 1625 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1612.5 1600 1587.5 1575 1562.5 1550 1537.5 1525 1512.5 1500 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Compound 10) GaPxN1-x=GaP+GaN M.P OF Ternary 1500 1525 1537.5 1550 1562.5 1575 1587.5 1600 1612.5 1625 X values 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1637.5 1650 1662.5 1675 1687.5 1700 1712.5 1725 1737.5 1750 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Doping of component in a Binary semiconductor like Nitride III-V Ternary Semiconductors and changing the composition of do pant has actually resulted in lowering of Melting point. Future Plans: 1) Current data set of investigation of Melting point of Nitride III-V Ternary Semiconductors include the most recently developed methods and basis sets are continuing. The data is also being mined to reveal problems with existing theories and used to indicate where additional research needs to be done in future. 2) The technological importance of the ternary semiconductor alloy systems investigated makes an understanding of the phenomena of alloy broadening necessary, as it may be important in affecting semiconductor device performance. Conclusion: 1) This paper needs to be addressed theoretically so that a fundamental understanding of the physics involved in such phenomenon can be obtained in spite of the importance of ternary alloys for device applications. 2) Limited theoretical work exists on Melting point of Nitride III-V Ternary Semiconductors with in the Composition range of (0 Results and Discussion: Melting point values of Ternary Semiconductors are used in calculation of Thermal Physical Property of Ternary Semiconductors and Band Energy Gap is used for Electrical conduction of semiconductors. This phenomenon is used in Band Gap Engineering. Acknowledgments. – This review has benefited from V.R Murthy, K.C Sathyalatha contribution who carried out the calculation of physical properties for several ternary compounds with additivity principle. It is a pleasure to acknowledge several fruitful discussions with V.R Murthy. References: · Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, 1999, pp. 1-36. · S.Adachi, J. Appl. Phys., 58, no.3, pp.R1-R29 (1985). · M.A.Afromowitz, J. Appl. Phys., 44, no.3, pp.1292-1294 (1973). · D.E.Aspnes, Phys. Rev., B14, no.12, pp.5331-5343 (1976). · D.E.Aspnes, S.M.Kelso, R.A.Logan, R.Bhat., J.Appl.Phys., 60, no.2, pp.754-767 (1986). · I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer, Berlin-Heidelberg-New York, 1977. · K. Brennan, K. Hess, J. Appl. Phys., 59, no.3, pp.964-966 (1986). · T. J. Drummond, W. Kopp, R. Fischer, H. Morkoc, J. Appl. Phys., 53, no.2, pp.1028-1029 (1982). · M. Ettenberg, R. J. Paff, J. Appl. Phys., 41, no.10, pp.3926-3927 (1970). · M.A. Haase, M.A. Emanuel, S.C. Smith, J.J. Coleman, and G.E. Stillman, Appl. Phys. Lett., 50, no.7, pp.404-406 (1987). · J.J. Harris, C.T. Foxon, K.W.J. Barhkam, D.E. Lacklison, J. Hewett, C. White, J. Appl. Phys., 61, no.3, pp.1219-1221 (1987) · S. Hava, M. Auslender, J. Appl. Phys., 73, no.11, pp.7431-7434 (1993). · R. Heilman, G. Oelgart, Semicond. Sci. Technol., 5, no 10, pp.1040-1045 (1990). · G. Hill, and P.N.Robson, J.de Physique, 42, Colloque no.7, Suppl. au no.10, pp.C7-335 - C7-341 (1981). · J.H. Hur, C.W. Myles, M.A. Gundersen, J. Appl. Phys., 67, no.11, pp.6917-6923 (1990). · S.C.Jain, J.M.McGregor, D.J.Roulston, J. Appl. Phys., 68, no.7, pp.3747-3749 (1990). · S.C.Jain, and D.J.Roulston, Solid State Electron, 34, no.5, pp.453-465 (1991). · D.W.Jenkins, J. Appl. Phys., 68, no.4, pp.1848-1853 (1990). · K.Kaneko, M.Ayabe, and N.Watanabe, in GaAs and Related Compounds (Inst.of Phys., London, Ser . 33a, 1977), pp.216-226. · J.M.Langer, H.Heinrich, Physica B, 134 no.1-3, pp.444-450 (1985). · B.D.Lichter and P.Sommelet, Trans. Metall. Soc., AIME, 245, pp.1021-1027 (1969). · D.Lippens, O.Vanbesien, in GaAs and Related Compounds (Inst.of Phys., Bristol and Philadelphia, Ser. 91, 1987), pp.757-760. · W.C.Liu, J. Material Sci., 25, no.3, pp.1765-1772 (1990). · D.C.Look, D.K.Lorance, J.R.Sizelove, C.E.Stutz, K.R.Evans, D.W.Whitson, J. Appl. Phys., 71, no.1, pp.260-266 (1992). · W.T.Masselink, Semicond. Sci. Technol., 4, no.7, pp.503-512 (1989). · W.T.Masselink,N.Braslau, D.LaTulipe, W.I.Wang, S.L.Wright, in GaAs and Related Compounds (Inst. of Phys.,Bristol and Philadephia, Ser. 91, 1987), pp.665-668. · B.Monemar, K.K. Shih, and G.D.Pettit, J. Appl. Phys., 47, no.6, pp.2604-2613 (1976). · M.de Murcia, D.Gasquet, E.Richard, P.Wolff, J.Zimmermann, J.Vanbremeersch, AIP Conf. Proc. 285 (Noise in Physical Systems and 1/f fluctuations, St.Louis, USA, 1993), pp.27-30 . · L. Pavesi, M.Guzzi, J. Appl. Phys., 75, no.10, pp.4779-4842 (1994). · P.J.Pearah, W.T.Masselink, J.Klem, T.Henderson, H.Morcoc, C.W.Litton, D.C.Reynolds, Phys.Rev., B32, no.6, pp.3857-3862 (1985). · L.Pfeiffer, K.W.West, H.L.Stormer, K.W.Baldwin, Appl. Phys. Lett., 55, no.18, pp.1888-1890 (1989). · A.N.Pikhtin, A.D.Yas'kov, Sov.Phys.Semicond., 14, no.4, pp.389-392 (1980). · V.M.Robbins, S.C.Smith, G.E.Stillman, Appl. Phys. Lett, 52, no.4, pp.296-298 (1988). · A.K. Sabena, J. Phys. C., 13, no.23, pp. 4323-4334 (1980). · A. K. Sabena, Solid St. Comm., 39, no.7, pp. 839-842 (1981). · A.K.Saxena, Phys. Rev., B24, no.6, pp. 3295-3302 (1981). · M.Shur, Physics of Semiconductor Devices, Prentice Hall, 1990. · A.J. Spring Thorpe, T.D. King, A.J. Beck, J. Electron. Mater. 4, no.1, pp. 101-118 (1975). · G.E.Stillman, C.M. Wolfe, and J.O. Dimmock, J. Phys. Chem. Solids, 31, no. 6, pp. 1199-1204 (1970). · M.Takeshima, J. Appl. Phys., 58, no.10, p.3846 (1985) · M.L. Timmons, J.A. Hutchby, R.K. Ahrenkiel, D.J. Dunlavy, in GaAs and Related Compounds (Inst. of Phys., Bristol and Philadelphia, Ser. 96, 1988), pp. 289-294. · W.Walukiewicz, J. Appl. Phys., 59, no.10, pp.3577-3579 (1986). · Z.Wilamowski, J.Kossut, W.Jantsch, and G.Ostermayer, Semicond.Sci.Technol. 6, no.10B, pp.B38-B46 (1991). · J.J.Yang, W.I.Simpson, L.A.Moudy, in GaAs and Related Compounds (Inst. of Phys., Bristol and London, Ser.63, 1981), pp.107-112. · J.J.Yang, L.A.Moudy, W.I.Simpson, Appl. Phys. Lett. 40, no. 3, pp.244-246 (1982). · H.A.Zarem, J.A.Lebens, K.B.Nordstrom, P.C.Sercel, S.Sanders, L.E.Eng, A.Yariv, K.J.Vahala, Appl.Phys.Lett., 55, no. 25, pp.2622-2624 (1989). 1
Related Articles -
Composition, Thermal property, Melting point, III-V Ternary semiconductors, Nitride group,
|